TIME SERIES PREDICTION AND CHANNEL EQUALIZER USING ARTIFICIAL NEURAL NETWORKS WITH VLSI IMPLEMENTATION A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology in VLSI DESIGN and EMBEDDED SYSTEM
ثبت نشده
چکیده
................................................................................................................................. vii List Of Figures ........................................................................................................................ iii List Of Tables .......................................................................................................................... iv Abbreviations Used ...................................................................................................................v CHAPTER 1.INTRODUCTION ..............................................................................................1 1.1 Motivation ....................................................................................................................2 1.2 Thesis Layout ...............................................................................................................3 CHAPTER 2.CONCEPTS OF NEURAL NETWORK ...........................................................4 2.1 Single Neuron Structure .....................................................................................................5 2.2 Activation Functions and Bias............................................................................................6 2.3 Learning Processes ............................................................................................................7 2.3.1 Supervised Learning: ...................................................................................................8 2.4 Recurrent Neural Network ................................................................................................9 2.5 The Back-Propagation Algorithm .................................................................................... 10 CHAPTER 3.MULTIFEED-BACK LAYER NEURAL NETWORK AND ITS APPLICATION....................................................................................................................... 12 3.
منابع مشابه
Flow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend
Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...
متن کاملPrediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network
This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.
متن کاملExperimental Investigation on the Deviated Sediment and Flow to Sediment Bypass Tunnels (SBTs) Using Submerged Plates
Sediment Bypass Tunnels (SBTs) are deviant channels that convey the current containing sediments from the upstream of the reservoir to the downstream of the dam. In this research, by applying submerged plates on the entrance of a 90-degree diversion channel for sediment transport, the effect of hydraulic parameters of flow and changes in the angle of plates on sediment transport and deviated fl...
متن کاملSpecial Issue on VIII Brazilian Symposium on Neural Networks
In this Special Issue of the Journal of International Fuzzy Systems, JIFS, nine papers selected among the best evaluated accepted papers for the VIII Brazilian Symposium on Neural Networks, SBRN’04 are presented. This symposium covers topics related to Artificial Neural Networks, Evolutionary Computation, Fuzzy Systems and other Computational, accepting papers presenting new theoretical studies...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008